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ABSTRACT 

In this paper we study some mapping properties of analytic iterations W(a, z). 
Our purpose is to establish a sufficient condition for W(a, z) to be conformal 
and univalent in z for z e D, where D is a given domain and for sufficiently 
small I a I. To this end we consider the differential equation a W(a, z)/aa = 
L[W(a, z)] with the condition W(O, z) = z. A sufficient condition for the solution 
W(a, z) of this system to be conformal and univalent in D for I a I < a0 (for 
some a0 > 0), and to satisfy the iteration equation, is established. 

1. Introduction and plan. We are concerned with functions W(a, z) analytic 
in a and z, which satisfy the iteration equation 

(1) 

with 

(2) 

W[a, W(b, z)] = W(a + b, z), 

W(O, z) = z, 

for z eD, where D is a given domain, and for sufficiently small [a [ , [b land  
[a+b[. 

Putting 

@W(a,z) [ = L(z), 
(3) aa a=o 

it is known [31 [2], that the function W(a, z) satisfies simultaneously the following 
three differential equations: 

~W(a, z) = L[W(a, z)], (4) aa 

OW(a,z) OW(a,z) L(z), 
(5) Oa = az 

and hence also: 
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OW(a,z) L[W(a,z)] 
(6) Oz = L(z) 

Evidently it follows from the definitions, that if the mappings W(a, z) (for 
sufficiently small [ a [ ) map D conformally on Da, then L(z) is necessary regular in D. 
Our main purpose is to establish a sufficient condition for the mappings W(a, z) 
to be conformal in D for [a [ < ao, for some ao > 0. Next we ask about the 
sufficient condition for the mappings W(a, z) to be univalent in D. It turns out 
that the answer to both questions is the same, namely: If  L(z) is regular and 
single-valued in the closure b of  the domain D, with a double pole at most at 
z = oo (in the case oo ~/)),  then W(a, z), for sufficiently small [a [, map D con- 
formally and univalently onto Da. Now, let W(a, z) (for z ~ D) be a single-valued 
analytic function of a for a E A, where A is a bounded domain in the a plane 
including the origin. Moreover, let W(a, z) satisfy equations (1) and (2) for z ~ D 
and a, b, a + b ~ A. Consider now the mapping of D given by W(a*, z), where 
a* ~ A. If there exists a continuous curve C c A connecting a* with the origin 
and such that for every a ~ C, L(z) is regular and single-valued in/3o (with a double 
pole at most at z = oo), then W(a*, z) maps D conformally and univalently onto 
Da*. 

In the following we assume that it is the function L(z), rather that W(a, z), 
that is given, and we shall use the differential systems (4) and (2) or (5) and (2) to 
generate the function W(a, z), which is obtained as the solution of either system. 
We shall prove that this solution, W(a, z), satisfies equation (1) and is conformal 
and univalent in D for I a] < a o for some ao > 0. 

We do not treat the differential equation (6), as this has been done (at least in 
the special case when L(0) = L'(0) = 0) in [2], but we obtain Theorem 1 of  [2] 
as an immediate corollary of our Theorem 1. 

We first suppose D to be bounded and later the results are extended, with 
some modifications, to the case of  an unbounded domain D. 

2. The ease of a bounded domain D. We consider the differential equation (4) 
with the initial condition (2). Equation (4) can be regarded as an ordinary dif- 
ferential equation and we may apply the classical existence and uniqueness theorem 
[q: 

Let L(W) be a regular and single-valued function in the neighborhood 
[ W - z[ < p(z) of the initial value z, then there exists one and only one analytic 
function W(a,z) which is regular for [a I < ao(z) and such that: 

(i) W(O,z)= z. 
(ii) Iw(a, )-zl for [a[ <ao(z). 

aW(a, z) = L(W) for [ a [ < ao(z). (fii) Oa 

Using Picard's successive approximation method, and the fact that the right 
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hand side of (4) does not contain the independent variable a explicitly (a fact which 
will play an important role in the sequel) one obtains ao(z) = p(z)/M(z,p), where 
M(z, p) is the maximum of I L(W) I for I W - z I =< p(z). 

We now restrict the initial values z to a bounded domain D, such that the 
function L(z) is regular and single-valued in the closure/3 of D. There exists then 
a minimal distance d > 0 from/3 to the nearest singularity of L(z). Denote by 
D(R) the domain consisting of points W, for which [ W -  z [ <  R, z e / )  and 
0 < R < d, where R is chosen sufficiently small to ensure that L(z) is still regular 
and single-valued in the closure of D(R). (The existence of such R > 0, follows 
from the fact that L(z) is single-valued in the compact domain/3). Denote by 
M(D, R) the bound of IL(W) I for We D(R). We have then: 

(7) IL(w)l <_M(D,R) for [ W - z ]  <R and ze / ) .  

We now prove: 

TKEOREM 1. Let L(z) be a regular single-valued function in the closure of 
the bounded domain D. Then there exists one and only one analytic function 
W(a,z), satisfying equation (4) with the initial condition (2) for  z ~D. For 
z e D  and lal < ao = R/M(D,R), this unique solution W(a,z) is regular in a, 
and regular and univalent in z. It satisfies equation (1)for lal, lbl and I a + b I 
< ao and z ~ D. 

Proof. It follows from the existence and uniqueness theorem that for every 
initial value z ¢D(R) there exists a unique solution of the differential equation (4) 
with the initial condition (2), which is regular for ] a ] <  ao(z)= p(z)/M(z,p). 
If we restrict the initial values to/3, then W(a, z) is regular in a for I a I < R/M(D,R) 
= a o  and for every z~/3 and satisfies: 

(8) [ W ( a , z ) - z l < R  , [a[ <ao,  zE/3. 

Note that we may apply the same argument to points z eD(R) and using the 
fact that the minimal distance from D(R) to the nearest singularity of L(z) is 
d - R, we obtain that W(a, z) is then regular in a for [ a [ < %, for some ~o > 0. 

It also follows from the classical proof of the existence and uniqueness theorem, 
that W(a, z) is analytic in the initial value z. We prove it here again in order to 
obtain something more, namely that W(a, z) is analytic in z for z ~ D and I a [ < ao. 

We expand W(a,z) as a power series in a with coefficients which are functions 
of z and put: 

® e . ( z )  
(9) W(a,z)= • -~. a', 

n=O 

w h e r e  P, , (z)  = 
a--O 

Using (4) and (2) we obtain: 
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(to) Po(z) = z, Pl(z) = L(z), 

and generally: 

= Oa. 1°=o =  aa-- V-t / T a  o=o 

It follows from (11) that Pn(z) is a polynomial in L(z) and its derivatives up to 
order (n - 1). P,(z) is, thus, a regular single-valued function for z e/3. The series in 
(9) is a series of regular functions, which converges uniformly for ze /3  and 
la l  < ao. Hence W ( a , z )  is regular in a and z for la l  < ao and zeD.  

To prove that W(a, z) satisfies (1), we use the uniqueness property of the solution 
of the system (4) and (2). Suppose that }a I < %, Ibt < ao and ]a + b I < a° and 
put a + b = c. Consider the function W(c, z) once as a function of z and c, and once 
as a function of z and a with b kept constant. In the second case we have: 

tgW(c, z) _ dW(c, z) = L[W(c, z)]. 
Oa OC 

Hence W(c, z), qua function of a and z satisfies the differential system: 

aW(c, z) = L[Wc, z)], (4') 0a 

with: 

(2') W(c, z)la =o = W(b, z), 

where W(b, z) is uniquely defined as I b l <  ao and z e D, and by (8) we have 
W(b, z)eD(R).  But the unique solution of the system (4') and (2') can be written 
as W[a, W(b,z)], which is regular for la ] <  %, and so W(c, z) = W[a, W(b, z)], 
which is (1). But as equation (1) holds for z e D, l a ] < Oto, I b l < ao, I c ] = ] a + b ] 
< ao, it holds whenever both sides can be defined, i.e. at least for z e D, [a l, [b l, 
]a + b[ < ao. 

In fact we have used equation (1) to obtain an analytic continuation of W(a, z), 
where z ~ D b and [b[ < ao, for such values of a for which [a + b] < a o. As the 
function W(a, z), so continued satisfies equation (1), it also satisfies equation (4). 

The univalence of W(a, z) for z ~ D and I a ] < ao can be proved either by using 
equation (1), or as another consequence of the uniqueness of the solution. Suppose 
there exist in D two distinct points zt and z2, and a value [ b* ] < ao, such that: 

(12) W(b*, zl) = W(b*, z2) = W*. 

Put c = a + b* and consider the two functions W(c, zl) and W(c, z2). Both 
functions, as functions of a, satisfy equation (4) with the initial condition: 
W]a=o = W*. By the uniqueness property it follows that W(c,z~)= W(c, z2) 
holds for ] c -  b* ]<  %, for some % > 0. But both functions are regular for 
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l el < ao, ao > 0 and they coincide in the disk I c - b * ] <  ~o. Hence, by the 
monodromy theorem, they coincide everywhere, and in particular for c = 0. 
Thus, W(O, z l )=  W(0,z2) which by (2) implies zl = z2. 

RE~4ARK. The estimate ao = R/M(D, R) obtained by Picard's method is sharp in 
the sense that it cannot be improved by a multiplicative constant. Indeed, let 
L(W) = W -1In n=1 ,2 ,3 , . . ,  and let D be a bounded domain contained in the 
half plane Re{z} > 1, with z = 1 as a boundary point. By solving equation (4) 
with condition (2) we obtain: 

W(a,z) = z {1 + 
(n + 1)a2-(n+ l)/n[ nl(n+ l) 

n -j , where 1 n/(*+lJ = 1. 

W(a,z) is regular for lal < n/(n + 1)lzl  <~+1'/~, so that W(a,z) is regular for 
z E D and ] a ] < n/(n + 1). In this case the value ao = n/(n + 1) is the best pos- 
sible. On the other hand, for every 0 < R < 1 we have R[M(D,R) = R(1 - R) 1In. 
We easily get: 

Max M(6 ,R)  = n ¥ 1 W - 4 - f }  = n + 1 

where # = (1/(n + 1))1/~< 1 for every n, but limn-.~ /z = 1. Hence if we put 
ao = CR/M(D,R), we cannot take C > 1. 

We deduce now from Theorem 1 two corollaries regarding the solutions of 
the differential equations (5) and (6). 

COROLLARY 1. Consider the partial differential equation (5)with the boundary 
condition (2) and let L(z) be a regular single-valued function in the closure of  
the bounded domain D. Then, there exists a unique analytic solution W(a, z) of 
the system (5) and (2) and it is given by the power series (9); i.e. it is identical 
with the solution of the system (4) and (2). Hence all the results obtained in 
Theorem l for the solution of(4) and (2) are valid for the solution of(5) and (2). 

Proof. Assume there exists a solution of  the system (5) and (2), given by a 
power series in a: 

(13) W(a,z)= ~, ~ a  ~. 
n = 0  

Inserting (13) into (5) and using (2) we obtain: 

i 2 (14) Qo(z) = z, Q,(z) = Q , - l ( z ) L ( ) ,  n = 1,2, ... 

By comparing (14) with (10) and (11) we see that Q,(z)=P,(z),  (n = 0,1 ,2 , . . . ) .  

COROLI.ARY 2. Theorem 1 of I-2]. Let 

(15) C(z) = l :  2 + l :  3 + . . . .  
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In Theorem 1 [21 the authors prove that if(15) converges for [ z [ < r, r >0, then the 
series defines a function L(z)  and permits the construction of a uniquely defined 
function W(a,z) ,  satisfying equation (1). This function W(a,z)  is then analytic 
in a and z for all finite complex a and for ]z[ < R(a), R(a) > 0. The construction 
of the function W(a, z) is carried out by proving the existence of a solution of the 
differential equation (6), which, in this case, has an inconvenient singularity at 
z = 0. We give another proof to this theorem: If L(z)  is regular for I z I < r, r > 0, 
it follows from (15) that for [z[ __< r, < r we have [L(z)[ < K]zl z for some K. 
Let D be the disk ] z ] < R =< rl/2, then M(D, R) <= (2R)ZK. Note that here we use R 
both as the radius of the disk D and as the radius of extension of D in (7). It 
follows that 

R R 1 
a° = M(D, R--'-'--~) > = " = 4R2K 4RK 

If R ~ 0, then R ]M(D, R) --+ co. This implies that for every finite a, there exists 
R(a) > 0, such that [a I < 1/4R(a)K < ao holds. Thus, we have proved that for 
every finite a, there exists a disk [ z [ < R(a), R(a) > 0, such that W(a, z) is regular 
(and even univalent) for I zl < R(a). 

3. Extension to an unbounded domain D. 
Theorem 2. Let D be an unbounded domain in the z plane, such that [) 

contains the point at infinity, but not the whole z plane, and let L(z) be analytic 
and single-valued for  z eD,  with a double pole at most at z = oo. Then there 
exists a unique solution of equation (4) with the initial condition (2 ) for  z eD.  
This solution W(a, z) is analytic in a for  [ a I < ao, ao > 0 and z ~D, conformal and 
univalent in z for  z e D, I a I < 60, and has at most one simple pole at some point 
z o e D ,  (Zo may vary with a), and it satisfies equation ( I ) f o r  [a 1, I bl and 

(a + b) < 60. 

Proof. Without loss of generality we may assume 0 4/). Setting 

1 1 
( 1 6 )  co = = z 

the system (4) and (2) transforms into: 

do = _ CO2L(c O_ I) = L*(CO), (17) da 

( 1 8 )   o(o) = 

and the domain D is mapped by ~ = 1 [z onto the bounded domain A. the function 
L*(co) is regular in A, and we can apply Theorem 1 to the system (17) and (18). 
Thus, there exists a unique analytic solution co(a, ~) which is regular in a, regular 
and univalent in ~ for I a I < ao, 6o >0, and ~ e A. By (16) this implies that W(a, z), 
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which satisfies (4) and (2), is regular in a, regular and univalent in z for z ~ D and 
]a [ < a o, unless o~(a, C) = 0. But, since o~(a, 4) is univalent in A (for l a I < ao) 
it has at most one simple zero Co E A. (For every a the point Co may be different). 
Hence W(a, z) has at most one simple pole at some point Zo = 1/Co which belongs 
to D. 

Note that if L(z) is regular or has at most one simple pole at z = ~ ,  then 
L*(0) = 0. Hence ~ = 0 is a fixpoint of ~(a,C), i.e. co(a,0) = 0, and by (16) it 
follows that W(a, z) has one simple pole at z = ~ ,  so that z = ~ is a fixpoint of 
w(a,z). 

By Theorem 1, ~o(a,~) satisfies equation (1) under the specified conditions, 
and it easily follows that the same is true for W(a, z). 
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