ANALYTIC ITERATION AND DIFFERENTIAL EQUATIONS*

BY

MEIRA LAVIE

ABSTRACT

In this paper we study some mapping properties of analytic iterations $W(a, z)$. Our purpose is to establish a sufficient condition for $W(a, z)$ to be conformal and univalent in z for $z \in D$, where D is a given domain and for sufficiently small | a |. To this end we consider the differential equation $\frac{\partial W(a, z)}{\partial a}$ = $L[W(a, z)]$ with the condition $W(0, z) = z$. A sufficient condition for the solution *W*(*a, z*) of this system to be conformal and univalent in *D* for $|a| < a_0$ (for some $a_0 > 0$, and to satisfy the iteration equation, is established.

1. Introduction and plan. We are concerned with functions $W(a, z)$ analytic in a and z, which satisfy the iteration equation

$$
(1) \t W[a, W(b, z)] = W(a + b, z),
$$

with

$$
W(O,z)=z,
$$

for $z \in D$, where D is a given domain, and for sufficiently small $|a|, |b|$ and $|a+b|$.

Putting

(3)
$$
\frac{\partial W(a,z)}{\partial a}\Big|_{a=0} = L(z),
$$

it is known [3], [2], that the function $W(a, z)$ satisfies simultaneously the following three differential equations:

(4)
$$
\frac{\partial W(a,z)}{\partial a} = L[W(a,z)],
$$

(5)
$$
\frac{\partial W(a,z)}{\partial a} = \frac{\partial W(a,z)}{\partial z} L(z),
$$

and hence also:

Received December 27, 1966.

^{*} This paper is based on a part of the author's thesis towards the D.Sc. degree, under the guidance of Professor E. Jabotinsky at the Teclmion Israel Institute of Technology, Haifa.

1967] ANALYTIC ITERATION AND DIFFERENTIAL EQUATIONS 87

(6)
$$
\frac{\partial W(a,z)}{\partial z} = \frac{L[W(a,z)]}{L(z)}.
$$

Evidently it follows from the definitions, that if the mappings $W(a, z)$ (for sufficiently small $|a|$ map D conformally on D_a , then $L(z)$ is necessary regular in D. Our main purpose is to establish a sufficient condition for the mappings $W(a, z)$ to be *conformal* in D for $|a| < a_0$, for some $a_0 > 0$. Next we ask about the sufficient condition for the mappings $W(a, z)$ to be *univalent* in D. It turns out that the answer to both questions is the same, namely: If $L(z)$ is regular and single-valued in the closure \bar{D} of the domain D, with a double pole at most at $z = \infty$ (in the case $\infty \in \bar{D}$), then $W(a, z)$, for sufficiently small |a|, map D conformally and univalently onto D_a . Now, let $W(a, z)$ (for $z \in D$) be a single-valued analytic function of a for $a \in A$, where A is a bounded domain in the a plane including the origin. Moreover, let $W(a, z)$ satisfy equations (1) and (2) for $z \in D$ and $a, b, a + b \in A$. Consider now the mapping of D given by $W(a^*, z)$, where $a^* \in A$. If there exists a continuous curve $C \subset A$ connecting a^* with the origin and such that for every $a \in C$, $L(z)$ is regular and single-valued in \bar{D}_a (with a double pole at most at $z = \infty$), then $W(a^*, z)$ maps D conformally and univalently onto D_{α^*} .

In the following we assume that it is the function $L(z)$, rather that $W(a, z)$, that is given, and we shall use the differential systems (4) and (2) or (5) and (2) to generate the function $W(a, z)$, which is obtained as the solution of either system. We shall prove that this solution, $W(a, z)$, satisfies equation (1) and is conformal and univalent in D for $|a| < a_0$ for some $a_0 > 0$.

We do not treat the differential equation (6), as this has been done (at least in the special case when $L(0) = L'(0) = 0$ in [2], but we obtain Theorem 1 of [2] as an immediate corollary of our Theorem 1.

We first suppose D to be bounded and later the results are extended, with some modifications, to the case of an unbounded domain D.

2. The case of a bounded domain D. We consider the differential equation (4) with the initial condition (2). Equation (4) can be regarded as an ordinary differential equation and we may apply the classical existence and uniqueness theorem $\lceil 1 \rceil$:

Let $L(W)$ be a regular and single-valued function in the neighborhood $|W - z| \leq \rho(z)$ of the initial value z, then there exists one and only one analytic function $W(a, z)$ which is regular for $|a| < a_0(z)$ and such that:

(i) $W(0, z) = z$.

(ii)
$$
|W(a, z) - z| \leq \rho(z)
$$
 for $|a| < a_0(z)$.

(iii) $\frac{\partial W(a, z)}{\partial a} = L(W)$ for $|a| < a_0(z)$.

Using Picard's successive approximation method, and the fact that the right

hand side of (4) does not contain the independent variable a explicitly (a fact which will play an important role in the sequel) one obtains $a_0(z) = \rho(z)/M(z,\rho)$, where $M(z, \rho)$ is the maximum of $|L(W)|$ for $|W - z| \leq \rho(z)$.

We now restrict the initial values z to a bounded domain D , such that the function $L(z)$ is regular and single-valued in the closure \bar{D} of D. There exists then a minimal distance $d > 0$ from \bar{D} to the nearest singularity of $L(z)$. Denote by $D(R)$ the domain consisting of points W, for which $|W-z| < R$, $z \in \overline{D}$ and $0 < R < d$, where R is chosen sufficiently small to ensure that $L(z)$ is still regular and *single-valued* in the closure of $D(R)$. (The existence of such $R > 0$, follows from the fact that $L(z)$ is single-valued in the compact domain \bar{D}). Denote by $M(D, R)$ the bound of $|L(W)|$ for $W \in \overline{D(R)}$. We have then:

(7)
$$
|L(W)| \leq M(D, R)
$$
 for $|W - z| \leq R$ and $z \in \overline{D}$.

We now prove:

THEOREM 1. Let $L(z)$ be a regular single-valued function in the closure of *the bounded domain D. Then there exists one and only one analytic function* $W(a, z)$, *satisfying equation* (4) *with the initial condition* (2) for $z \in D$. For $z \in D$ and $|a| < a_0 = R/M(D, R)$, this unique solution $W(a, z)$ is regular in a, *and regular and univalent in z. It satisfies equation (1) for* $|a|, |b|$ *and* $|a + b|$ $< a_0$ and $z \in D$.

Proof. It follows from the existence and uniqueness theorem that for every initial value $z \in \overline{D(R)}$ there exists a unique solution of the differential equation (4) with the initial condition (2), which is regular for $|a| < a_0(z) = \rho(z)/M(z,\rho)$. If we restrict the initial values to \overline{D} , then $W(a, z)$ is regular in a for $|a| < R/M(D,R)$ $=a_0$ and for every $z \in \overline{D}$ and satisfies:

$$
(8) \t|W(a,z)-z|\leq R, |a|
$$

Note that we may apply the same argument to points $z \in D(R)$ and using the fact that the minimal distance from $\overline{D(R)}$ to the nearest singularity of $L(z)$ is $d - R$, we obtain that $W(a, z)$ is then regular in a for $|a| < \alpha_0$, for some $\alpha_0 > 0$.

It also follows from the classical proof of the existence and uniqueness theorem, that $W(a, z)$ is analytic in the initial value z. We prove it here again in order to obtain something more, namely that $W(a, z)$ is analytic in z for $z \in D$ and $|a| < a_0$.

We expand $W(a, z)$ as a power series in a with coefficients which are functions of z and put:

(9)
$$
W(a, z) = \sum_{n=0}^{\infty} \frac{P_n(z)}{n!} a^n,
$$

where $P_n(z) =$ a--O Using (4) and (2) we obtain: 1967] ANALYTIC ITERATION AND DIFFERENTIAL EQUATIONS 89

(10)
$$
P_0(z) = z, P_1(z) = L(z),
$$

and generally:

$$
(11) \tP_n(z) = \frac{\partial^n W}{\partial a^n}\Big|_{a=0} = \left\{\frac{\partial}{\partial W}\left(\frac{\partial^{n-1} W}{\partial a^{n-1}}\right)\cdot \frac{\partial W}{\partial a}\right\}\Big|_{a=0} = P'_{n-1}(z)L(z).
$$

It follows from (11) that $P_n(z)$ is a polynomial in $L(z)$ and its derivatives up to order $(n - 1)$. $P_n(z)$ is, thus, a regular single-valued function for $z \in \overline{D}$. The series in (9) is a series of regular functions, which converges uniformly for $z \in \overline{D}$ and $|a| < a_0$. Hence $W(a, z)$ is regular in a and z for $|a| < a_0$ and $z \in D$.

To prove that $W(a, z)$ satisfies (1), we use the uniqueness property of the solution of the system (4) and (2). Suppose that $|a| < \alpha_0$, $|b| < a_0$ and $|a + b| < a_0$ and put $a + b = c$. Consider the function $W(c, z)$ once as a function of z and c, and once as a function of z and a with b kept constant. In the second case we have:

$$
\frac{\partial W(c,z)}{\partial a} = \frac{\partial W(c,z)}{\partial c} = L[W(c,z)].
$$

Hence $W(c, z)$, qua function of a and z satisfies the differential system:

(4')
$$
\frac{\partial W(c, z)}{\partial a} = L[Wc, z)],
$$

with:

(2')
$$
W(c, z)|_{a=0} = W(b, z),
$$

where $W(b, z)$ is uniquely defined as $|b| < a_0$ and $z \in D$, and by (8) we have $W(b, z) \in D(R)$. But the unique solution of the system (4') and (2') can be written as $W[a, W(b, z)]$, which is regular for $|a| < \alpha_0$, and so $W(c, z) = W[a, W(b, z)]$, which is (1). But as equation (1) holds for $z \in D$, $|a| < \alpha_0$, $|b| < a_0$, $|c| = |a + b|$ a_0 , it holds whenever both sides can be defined, i.e. at least for $z \in D$, $|a|, |b|$, $|a + b| < a_0$.

In fact we have used equation (1) to obtain an analytic continuation of $W(a, z)$, where $z \in D_b$ and $|b| < a_0$, for such values of a for which $|a + b| < a_0$. As the function $W(a, z)$, so continued satisfies equation (1), it also satisfies equation (4).

The univalence of $W(a, z)$ for $z \in D$ and $|a| < a_0$ can be proved either by using equation (1), or as another consequence of the uniqueness of the solution. Suppose there exist in D two distinct points z_1 and z_2 , and a value $|b^*| < a_0$, such that:

(12)
$$
W(b^*, z_1) = W(b^*, z_2) = W^*.
$$

Put $c = a + b^*$ and consider the two functions $W(c, z_1)$ and $W(c, z_2)$. Both functions, as functions of *a,* satisfy equation (4) with the initial condition: $W|_{a=0} = W^*$. By the uniqueness property it follows that $W(c, z_1) = W(c, z_2)$ holds for $|c - b^*| < \alpha_0$, for some $\alpha_0 > 0$. But both functions are regular for

90 MEIRA LAVIE [April

 $|c| < a_0$, $a_0 > 0$ and they coincide in the disk $|c - b^*| < a_0$. Hence, by the monodromy theorem, they coincide everywhere, and in particular for $c = 0$. Thus, $W(0, z_1) = W(0, z_2)$ which by (2) implies $z_1 = z_2$.

REMARK. The estimate $a_0 = R/M(D, R)$ obtained by Picard's method is sharp in the sense that it cannot be improved by a multiplicative constant. Indeed, let $L(W) = W^{-1/n} n = 1, 2, 3, \cdots$ and let D be a bounded domain contained in the half plane $\text{Re}\{z\} > 1$, with $z = 1$ as a boundary point. By solving equation (4) with condition (2) we obtain:

$$
W(a,z)=z\left\{1+\frac{(n+1)az^{-(n+1)/n}}{n}\right\}^{n/(n+1)}, \text{ where } 1^{n/(n+1)}=1.
$$

 $W(a, z)$ is regular for $|a| < n/(n + 1)|z|^{(n+1)/n}$, so that $W(a, z)$ is regular for $z \in D$ and $|a| < n/(n + 1)$. In this case the value $a_0 = n/(n + 1)$ is the best possible. On the other hand, for every $0 < R < 1$ we have $R/M(D,R) = R(1 - R)^{1/n}$. We easily get:

$$
\text{Max } \frac{R}{M(D,R)} = \frac{n}{n+1} \left(\frac{1}{n+1} \right)^{1/n} = \frac{n\mu}{n+1}
$$

where $\mu = (1/(n + 1))^{1/n} < 1$ for every *n*, but $\lim_{n \to \infty} \mu = 1$. Hence if we put $a_0 = CR/M(D, R)$, we cannot take $C > 1$.

We deduce now from Theorem 1 two corollaries regarding the solutions of the differential equations (5) and (6).

COROLLARY 1. *Consider the partial differential equation* (5)with *the boundary condition* (2) *and let L(z) be a regular single-valued function in the closure of the bounded domain D. Then, there exists a unique analytic solution W(a, z) of the system* (5) *and* (2) *and it is given by the power series* (9); *i.e. it is identical with the solution of the system* (4) *and* (2). *Hence all the results obtained in Theorem l for the solution* of(4) *and* (2) *are valid for the solution* of(5) *and* (2).

Proof. Assume there exists a solution of the system (5) and (2), given by a power series in a:

(13)
$$
W(a, z) = \sum_{n=0}^{\infty} \frac{Q_n(z)}{n!} a^n.
$$

Inserting (13) into (5) and using (2) we obtain:

(14)
$$
Q_0(z) = z
$$
, $Q_n(z) = Q'_{n-1}(z)L(z)$, $n = 1, 2, ...$

By comparing (14) with (10) and (11) we see that $Q_n(z) \equiv P_n(z)$, $(n = 0, 1, 2, \dots)$.

COROLLARY 2. *Theorem* 1 of [2]. Let

(15)
$$
L(z) = l_1 z^2 + l_2 z^3 + \cdots.
$$

In Theorem 1 [2], the authors prove that if (15) converges for $|z| < r, r > 0$, then the series defines a function $L(z)$ and permits the construction of a uniquely defined function $W(a, z)$, satisfying equation (1). This function $W(a, z)$ is then analytic in a and z for all finite complex a and for $|z| < R(a)$, $R(a) > 0$. The construction of the function $W(a, z)$ is carried out by proving the existence of a solution of the differential equation (6), which, in this case, has an inconvenient singularity at $z = 0$. We give another proof to this theorem: If $L(z)$ is regular for $|z| < r$, $r > 0$, it follows from (15) that for $|z| \le r_1 < r$ we have $|L(z)| \le K |z|^2$ for some K. Let D be the disk $|z| < R \le r_1/2$, then $M(D, R) \le (2R)^2 K$. Note that here we use R both as the radius of the disk D and as the radius of extension of D in (7). It follows that

$$
a_0 = \frac{R}{M(D,R)} \geq \frac{R}{4R^2K} = \frac{1}{4RK}.
$$

If $R \to 0$, then $R/M(D, R) \to \infty$. This implies that for every finite a, there exists $R(a) > 0$, such that $|a| < 1/4R(a)K \le a_0$ holds. Thus, we have proved that for every finite a, there exists a disk $|z| < R(a)$, $R(a) > 0$, such that $W(a, z)$ is regular (and even univalent) for $|z| < R(a)$.

3. Extension to an unbounded domain D.

Theorem 2. Let D be an unbounded domain in the z plane, such that \bar{D} *contains the point at infinity, but not the whole z plane, and let L(z) be analytic* and single-valued for $z \in \overline{D}$, with a double pole at most at $z = \infty$. Then there *exists a unique solution of equation* (4) *with the initial condition* (2) *for* $z \in D$. *This solution W(a, z) is analytic in a for* $|a| < \tilde{a}_0$, $\tilde{a}_0 > 0$ and $z \in D$, conformal and *univalent in z for z* \in *D*, $|a|$ $<$ \tilde{a}_0 , and has at most one simple pole at some point $z_0 \in D$, (z₀ may vary with a), and it satisfies equation (1) for |a|, |b| and $(a + b) < \tilde{a}_0$.

Proof. Without loss of generality we may assume $0 \notin \overline{D}$. Setting

$$
\omega = \frac{1}{W}, \xi = \frac{1}{z}
$$

the system (4) and (2) transforms into:

(17)
$$
\frac{d\omega}{da} = -\omega^2 L(\omega^{-1}) = L^*(\omega),
$$

$$
(18) \t\t \omega(O) = \xi,
$$

and the domain D is mapped by $\xi = 1/z$ onto the bounded domain Δ . the function $L^*(\omega)$ is regular in $\overline{\Delta}$, and we can apply Theorem 1 to the system (17) and (18). Thus, there exists a unique analytic solution $\omega(a, \xi)$ which is regular in a, regular and univalent in ζ for $|a| < \tilde{a}_0$, $\tilde{a}_0 > 0$, and $\zeta \in \Delta$. By (16) this implies that $W(a, z)$,

92 MEIRA LAVIE

which satisfies (4) and (2), is regular in a, regular and univalent in z for $z \in D$ and $|a| < \tilde{a}_0$, unless $\omega(a, \xi) = 0$. But, since $\omega(a, \xi)$ is univalent in Δ (for $|a| < \tilde{a}_0$) it has at most one simple zero $\xi_0 \in \Delta$. (For every a the point ξ_0 may be different). Hence $W(a, z)$ has at most one simple pole at some point $z_0 = 1/\zeta_0$ which belongs to D.

Note that if $L(z)$ is regular or has at most one simple pole at $z = \infty$, then $L^*(0) = 0$. Hence $\xi = 0$ is a fixpoint of $\omega(a,\xi)$, i.e. $\omega(a,0) = 0$, and by (16) it follows that $W(a, z)$ has one simple pole at $z = \infty$, so that $z = \infty$ is a fixpoint of *w(a,z).*

By Theorem 1, $\omega(a,\xi)$ satisfies equation (1) under the specified conditions, and it easily follows that the same is true for $W(a, z)$.

REFERENCES

1. L. Bieberbach, *Theorie der Gewohrdichen Differentialflieehungen,* Springer, Berlin, 1953, p. 1-5.

2. P. Erdös and E. Jabotinsky, *On analytic iteration*, J. Analyse Math. 8 (1960-1961), 361-376.

3. E. Jabotinsky, *On iterational invariants,* Technion-Israel Inst. of Tech. Publ. 6 (1954-1955), 68-80.

CARNEGIE INSTITUTE OF TECHNOLOGY, PITTSBURGH, PENNSYLVANIA, U.S.A.

ON LEAVE FROM THE TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA, ISRAEL